

Evaluation of an Alternative Implementation to Native

Operating System Extended File Attributes

by Joshua Edwards

ARL-CR-0686 December 2011

Prepared by
ICF International

401 E. Pratt Street, Suite 2214
Baltimore, MD 21202

Under Contract
W911QX-07-F-0023

Report No. 1057

COR:
U.S. Army Research Laboratory

RDRL-CIN (Linda Duchow)
2800 Powder Mill Road

Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.

ERRATA SHEET

re: ARL-TR-5856 (now ARL-CR-0686), Evaluation of an Alternative Implementation to
Native Operating System Extended File Attributes, December 2011,

by Joshua Edwards

This is an errata sheet for ARL-TR-5856 (now ARL-CR-0686). The ARL number for this
contractor report has been updated. Please attach this sheet to the cover page of the origioal
document

Page Reads Should Read

ARL-CR-0686

Prepare<! by ICF International, 401 E. Pratt Street. Suite 2214, Baltimore,
MD21202

Cover ARL-TR-5856
Under Contract W911QX-07-F-0023, Report No. 1057

COR: U.S. Army Research Laboratory, RDRL-CIN (Linda Duchow), 2800
Powder Mill Road, Adelphi, MD 20783-1197

ARL-CR-0686

Prepared by ICF lntemational. 401 E. Pratt Street, Suite 2214, Baltimore,

Title
MD 21202

Page
ARL-TR-5856

Under Contract W911QX-07-F-0023, Report No. 1057

COR: U.S. Army Research Laboratory, RDRL-CIN (Linda Duchow), 2800
Powder Mill Road, Adelphi, MD 20783-1197

Sa. CONTRACT NUMBER: W9UQX-07-F-0023

7. PERFORMING ORGANIZATION NAME(S)/ADDRESS(ES):
ICF International, 401 E. Pratt Street, Suite 2214, Baltimore, MD

8. PERFORMING 21202

ii REPORT NUMBER:
8. PERFORMING REPORT NUMBER: ARL-CR-0686 ARL-TR-5856

9. SPONSORING/MONITORING AGENCY
NAME(S)/AODRESS(ES):
U.S. Army Research Laboratory, ATTN: RDRL-CIN-0 , 2800 Powder
Mill Road, Adelphi MD 20783-1197

Josh Edwards
U.S. Army Research Laboratory,
Computational and Information Sciences Directorate, ATTN: RDRL- CIH-D,
Adelphi, MD 20783

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-CR-0686 December 2011

Evaluation of an Alternative Implementation to Native
Operating System Extended File Attributes

Joshua Edwards

Computational and Information Sciences Directorate, ARL

Prepared by
ICF International

401 E. Pratt Street, Suite 2214
Baltimore, MD 21202

Under Contract
W911QX-07-F-0023

Report No. 1057

COR:
U.S. Army Research Laboratory

RDRL-CIN (Linda Duchow)
2800 Powder Mill Road

Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2011
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Evaluation of an Alternative Implementation to Native Operating System Extended
File Attributes

5a. CONTRACT NUMBER

W911QX-07-F-0023
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Joshua Edwards
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICF International
401 E. Pratt Street, Suite 2214
Baltimore, MD 21202

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-CR-0686

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIN-D
2800 Powder Mill Road
Adelphi MD 20783-1197

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Extended attributes (xattrs) are a common means of storing file and directory metadata in a simple key-value pairing. Most, but
not all, modern Linux file systems allow for this functionality. For those that do not, an alternative was developed using a
locally stored database and a set of Python scripts to emulate the file system’s method of storing xattrs. Comparing the two
methods in three key areas—speed, size, and portability—will allow developers to determine which one may be the better
option to fill their needs and fit their structure. The conclusion drawn favors using the database method in largely Python
solutions and file systems that do not natively allow xattrs, while the file system method is preferred in most other situations or
when hard drive space is in significantly short supply.

15. SUBJECT TERMS

Extended attributes, file systems, Linux

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

18

19a. NAME OF RESPONSIBLE PERSON
Linda Duchow

a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
(301) 394-1630

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Tables iv

Acknowledgments v

1. Summary 1

2. Introduction 1

3. Procedures 4

4. Results 5

5. Discussion 6

6. Conclusions 7

List of Symbols, Abbreviations, and Acronyms 8

Distribution List 9

 iv

List of Tables

Table 1. Average completion time in seconds for different xattr methods and test values.5

Table 2. Average completion time in seconds for a set of xattr functions with the number of
simultaneous clients running..6

 v

Acknowledgments

This research would not be possible without the code written and implemented by Travis Parker,
an ICF International contractor for the U.S. Army Research Laboratory’s (ARL) Computational
and Information Sciences Directorate (CISD).

 vi

INTENTIONALLY LEFT BLANK.

 1

1. Summary

Most modern Linux file systems use extended file attributes (xattrs) to store metadata for files in
simple key-value pairs. This is generally done by enabling the libattr feature during kernel
configuration and making calls to “getfattr” and “setfattr”. Recent work by Travis Parker, an ICF
International contractor for the Computational and Information Sciences Directorate (CISD),
enabled a new method for storing xattrs. This method uses a locally stored database (DB) and
Python scripts to emulate the standard xattr functionality, while remaining largely file system
(FS) agnostic.

This DB xattr functionality does not set out to wholly redesign the standard. It instead attempts
to provide an additional option for certain scenarios. The benefits and tradeoffs become clear
when comparing the two methodologies for speed, size, scalability, and portability.

The FS xattr methodology is the best all-around option. Since it is at the kernel level, it is fast
and largely indifferent to the software calling it. The DB xattr methodology would be more
appropriate in an environment where file systems may change. The DB method also shows
slightly improved results in an all-Python environment where the xattr scripts can be imported
and stored as an object, rather than making individual system calls.

2. Introduction

Extended file attributes are meant to augment owner, group, timestamp, and other traditional
UNIX inode metadata. The functionality for xattrs rests in the libattr library and is compiled with
the Linux kernel at build time. Linux uses xattrs internally to implement access control lists and
labels, but they can also be used to store arbitrary user metadata. Depending on the attribute size,
xattrs can either be stored within the inode space itself or as a pointer to additional data blocks*.
Since the xattrs are implemented at the kernel level, the setting and getting of xattrs are very
rapid.

A kernel implementation is how xattrs are normally handled; however, an alternative exists.
Travis Parker’s methodology detaches itself from the file system and uses a locally stored
database and Python scripts to emulate the traditional xattr calls. This alternate method includes
much of the same functionality, along with other enhancements that allow it to perform at a
similar level in certain situations.

* Hellwig, C. XFS: The Big Storage File System for Linux. ;login 34.5 (2009): 10–18.

 2

The local database for this implementation consists of a single table, traditionally named “xattr”.
This table holds three columns: “obj,” “attr,” and “val.” They are all standard text, varchar(255)
columns that hold the full file path, the attribute key, and the attribute value, respectively. While
any relational database is acceptable, our implementation uses PostgreSQL.

There are two major Python scripts involved:

• xa – This script is intended for use on the command line interface (CLI) as a single call and
most resembles the FS xattr calls. Depending on the CLI arguments passed to it, it makes a
connection to the database and reads, writes, or removes the xattr data for a file using calls
to the imported dbXattr module. It then closes the database connection and ends.

• dbXattr.py – This is the primary script that xa and any other scripts use for all of the actual
xattr-like functionality.

The dbXattr.py script is imported and instantiated as an object, dbXattr. The constructor allows
for passing an already established database connection or the information to make its own
connection. Once the database connection is established, the dbXattr script holds the connection
open. Functionality also exists to add a file or directory, even recursively, to the cache from the
start. A final flag can be set to allow it to automatically commit changes or hold a “dirty list”
until the user orders it to commit the xattr changes.

After instantiation, individual functions can be called to set, get, and remove file xattrs using its
respectively named functions. Each of the functions checks the internal cache to determine if the
value is already stored. If it is not, it makes a call to the database to refresh its cache.

The following is an example of the get function:

def get (self,path,attr=None,scavenge=True):
 #see if we have it cached
 if path not in self.attrs:
 #if not try to fetch it
 try:
 self._cache(path,scavenge=scavenge)
 except Exception,e:
 print e
 […]

The following is an example of the _cache function:

def _cache (self, path, recurse=False, scavenge=False,
autoCommit=False):
 cur = self.dbConn.cursor()
 if recurse:
 cur.execute(self.select+"obj LIKE '%s%%'" % path)
 else:
 cur.execute(self.select+"obj = '%s'" % path)
 rows = cur.fetchall()
 cur.close()

 3

 if rows:
 for row in rows:
 if row[0] not in self.attrs:
 self.attrs[row[0]]={}
 if scavenge and not os.path.exists(row[0]):
 self.remove(row[0],autoCommit=autoCommit)
 continue
 self.attrs[row[0]][row[1]]=row[2]

Once the values are stored in the cache, the requested action is performed on the stored values in
a dirty list variable. A get returns the cached value. A set creates or updates the cached value in a
dirty list. A remove clears the value from the dirty list. If autocommit was activated or set to true
as a function argument, it will alter the value in the database at the same time. If not, the user
will need to call the commit function at a later time.

The commit function replaces the values stored in the database with the respective values in the
dirty list. Objects that are not present in the dirty list are not altered in the database. The others
are replaced with the new values using a SQL DELETE statement and INSERT statements.

The following is an example of the commit function:

def commit (self):
 cur=self.dbConn.cursor()
 if self.dirty:
 #remove all existing records, we should have all valid ones
cached
 dsql=self.delete % ("'" + "','".join(self.dirty) + "'")
 try:
 cur.execute(dsql)
 for path in self.dirty:
 if path in self.attrs: #may not be there if we are
scavenging up stale records
 for attr,value in self.attrs[path].items():
 cur.execute(self.insert,(path,attr,value))
 except Exception, e:
 print e
 stat=self.dbConn.commit()
 if not stat:
 self.dirty=[]
 cur.close()
 return stat

The metrics compared for the two xattr methods are performance, size, scalability, and
portability. Two experiments were conducted to evaluate performance and scalability, while size
and portability are touched on in the discussion.

 4

3. Procedures

The performance experiment was executed on a set of 5,000 flat text files. Four methods were
used to set and get xattrs on these files, two for the FS method and two for the DB method:

• Individual calls to setfattr and getfattr (FS)

• The xattr Python library and its setxattr and getxattr functions (FS)

• Individual calls to xa (DB)

• An instantiation of dbXattr (DB)

A Python script was written to go through these methods and measure how long it takes to
perform regular xattr functions. Each method would set and get its own pair of xattrs: a small,
randomly selected 0 or 1 value and a larger value of 254 letter A’s. The two values are primarily
for the FS method to test speeds for a value that could potentially fit within a file’s inode and a
value that could not. The inode size for the test system was 256 bytes.

The instance of dbXattr was created at the start of the script, and that object was used for all of
the relevant tests. A locally installed PostgreSQL database dedicated to the experiment was
created for the two DB xattr attempts.

Time was measured using Python’s standard time module. The CLI methods, getfattr/setfattr and
xa, were called using Python’s subprocess module and its call() function. The xattr library for
Python is used to give a more accurate view of time taken with the FS method. The FS method is
more direct than using a subprocess class as it does not need to set up a new shell instance with
each call. The subprocess calls to getfattr and setfattr are retained to better balance time taken
when comparing the FS method to xa calls.

The scalability experiment was set up similarly, except on a system with a 128-byte inode size
and using an external, networked database. Its primary goal was to determine how well the DB
method performed with multiple simultaneous clients running and on an already overloaded file
system. It used three methods for manipulating xattrs on separate sets of 5,000 flat text files:

• Calls to the xattr Python library (FS)

• The same calls to the xattr Python library while the file system is overloaded with constant
external calls (FSo)

• An instantiation of dbXattr with caching unused (DB)

The FS and DB method each have their own “client” script, while the FSo method mirrors the FS
script. Both clients begin by creating a unique set of 5,000 flat text files. Afterward, they enter a

 5

constant loop that performs a set of xattr actions: sets a small and a large pair of xattrs akin to the
performance experiment, reads each pair for each file 10 times in a random order, and finally
removes all of the xattrs. Once it completes a set, the time elapsed while running the set is
presented.

The FSo method uses the same client as the FS method; however, while running, several
input/output (I/O) overloader scripts run in the background. These scripts simply copy and
remove large text files and are meant to flood the file system with I/O requests, simulating a busy
server. This is to determine if there is any significant performance degradation between the
methods as use is scaled up.

The performance was measured for the three methods with different numbers of concurrent
clients running. We set a baseline with one client and then collected times for 20, 30, 50, 75, and
90 simultaneous clients.

4. Results

From the performance experiment, we found that the DB method generally performed worse.
When used as standalone CLI calls, the DB method performed roughly 20 times slower than the
standard FS method using subprocess calls, and around 1500 times slower than the direct xattr
library calls. When instantiated within the Python script itself, however, the RAM caching and
always-on database connection gave an occasional minute speed boost over the FS method, when
retrieving values (table 1).

Table 1. Average completion time in seconds for different
xattr methods and test values.

Test Time
DB small xattr set time 194.878011
DB (cache) small xattr set time 4.007993
FS small xattr set time 9.737148
FS (direct) small xattr set time 0.129128
DB small xattr get time 186.471242
DB (cache) small xattr get time 0.009079
FS small xattr get time 9.880415
FS (direct) small xattr get time 0.102592
DB large xattr set time 210.681424
DB (cache) large xattr set time 5.04396
FS large xattr set time 11.969459
FS (direct) large xattr set time 0.132928
DB large xattr get time 202.243332
DB (cache) large xattr get time 0.008986
FS large xattr get time 12.377902
FS (direct) large xattr get time 0.008148

 6

Regarding disk space, the PostgreSQL data directory took up 79,736 kilobytes prior to testing.
After the testing was completed, the data directory grew to 81,896 kilobytes. Thus, the space
needed to hold the four sets of xattr data for the DB method, 2,000 rows, was 2,160 kilobytes.

The scalability experiment had similar results. All of the methods showed longer run times as the
number of clients increased; but, the load never became so drastic that the DB method surpassed
the FS methods. Table 2 shows the average completion time in seconds for a set of xattr
functions with the number of simultaneous clients running. The numbers between the
performance and scalability experiments likely differ due to the different hardware
configurations.

Table 2. Average completion time in seconds for a set of xattr
functions with the number of simultaneous clients running.

Clients FS DB FSo
1 3.06 21.23 3.36

20 9.93 45.53 12.04
30 14.68 60.09 19.85
50 24.96 116.99 37.79
75 38.67 176.6 37.21
90 44.87 243.43 42.12

5. Discussion

Not all Linux file systems support xattr functionality, e.g., Network File System (NFS). Python
and a separate database were used specifically to allow more portability. For this purpose, the
databases are indifferent to the file system used and only require the ability to communicate with
each other. The method varies depending on the database used. In the experiment with
PostgreSQL, the psycopg2 Python module was used as the interface with the database.

The caching, while giving similar speeds to standard xattrs, has its own pitfalls. A stored cache is
not regularly updated unless forced. Other processes updating the same file’s xattrs would
introduce asymmetries between the cache and database. This can produce unintended behavior
for long-running daemons if they rely on monitoring xattrs for changes. This issue can be
mitigated by forcing the cache to be refreshed after a set time. The only way to eliminate this
issue is to deactivate caching. The speed is lost, but the integrity is maintained.

The possibility of data loss also exists when using a dirty list without autocommit to store xattrs
and the running process fails. These values remain in volatile memory until stored with a
function call.

 7

6. Conclusions

The optimal implementation for xattrs depends on system limitations and the desired effect
intended by the administrator. In terms of space usage, the FS method would be the most viable
option. By setting values within the white space of inodes, there very well may be no additional
space taken at all. However, in this age of ever-expanding hard drives, this should be considered
an issue only for the most space-constrained circumstances.

The performance test results indicate where the two xattr methods would be best suited. The FS
xattr method is a good, all-around option that is fast enough for most needs. A standalone CLI
call to xa is noticeably slower. In a largely Python-based environment, however, the increase in
speed from caching and the opportunity to instantiate an object present in the DB method may be
more attractive than using subprocess calls or a similar wrapper.

The performance degradation was fairly consistent as the load on the hardware increased in scale
for both methods. The FS method continued to outperform the DB method, even when the file
system was overloaded.

For Linux file systems that do not support xattr functionality, e.g., NFS, the DB method of
storing xattrs would be an option. Most of the standard CLI functionality is emulated within the
xa script. It is also portable; data written can be easily transferred from one file system to
another.

 8

List of Symbols, Abbreviations, and Acronyms

ARL U.S. Army Research Laboratory

CISD Computational and Information Sciences Directorate

CLI command line interface

DB database

FS file system

FSo file system overloaded

I/O iniput/output

NFS Network File System

xattr extended attribute

 9

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC HRR
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CIO LL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CIO MT
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

6 DIR USARL
 RDRL CIN D
 J EDWARDS (3 CPS)
 M SHEVENELL
 P GUARINO
 C ELLIS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 10

INTENTIONALLY LEFT BLANK.

	List of Tables
	Acknowledgments
	1. Summary
	2. Introduction
	3. Procedures
	4. Results
	5. Discussion
	6. Conclusions
	List of Symbols, Abbreviations, and Acronyms

